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SUMMARY

Validation of 3D �nite element model for free-surface �ow is conducted using a high quality and
high spatial resolution data set. The commonly numerical models with the conventional hydrostatic
pressure still remain the most widely used approach for the solution of practical engineering problems.
However, when a 3D description of the velocity �eld is required, it is useful to resort to a more accurate
model in which the hydrostatic assumption is removed. The present research �nds its motivation in the
increasing need for e�cient management of geophysical �ows such as estuaries (multiphase �uid �ow)
or natural rivers with the presence of short waves and=or strong bathymetry gradient, and=or strong
channel curvature. A numerical solution is based on the unsteady Reynolds-averaged Navier–Stokes
equations on the unstructured grid. The eddy viscosity is calculated from the e�cient k–� turbulence
model. The model uses implicit fractional step time stepping, and the characteristics method is used to
compute the convection terms in the multi-layers system (suitable for the vertical strati�ed �uid �ow),
in which the vertical grid is located at prede�ned heights and the number of elements in the water
column depends on water depth. The bottommost and topmost elements of variable height allow a
faithful representation of the bed and the time-varying free-surface, respectively. The model is applied
to the 3D open channel �ows of various complexity, for which experimental data are available for
comparison. Computations with and without non-hydrostatic are compared for the same trench to test
the validity of the conventional hydrostatic pressure assumption. Good agreement is found between
numerical computations and experiments. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The simulation of free-surface �ows is widely applied for many problems such as the de-
scription of hydrodynamic currents, the transport of pollutants, for weather prediction, just to
mention few. Several numerical models with the conventional hydrostatic pressure have been
successfully applied for most of geophysical free-surface �ows modelling. However, in the
presence of short waves and=or strong bathymetry gradient, and=or strong channel curvature,
a 3D description of the velocity �eld is required. Therefore it is useful to resort to a more
accurate model in which the hydrostatic assumption is removed.
Many 3D non-hydrostatic models have been carried out with the aim to simulate open

channel �ows. Johns [1] showed a method for 2D vertical-plane problems without directly
solving the vertical momentum equation, but determined vertical velocity from local continuity
and non-hydrostatic pressure from the integrated vertical momentum equation. The approach
would appear to be limited to steady problems. Nevertheless, the importance of non-hydrostatic
pressure in sand-wave problems was demonstrated. Casulli and Stelling [2] incorporated non-
hydrostatic pressure in the Cartesian scheme of Casulli and Cheng [3]. This showed some
promising results but the in�uence of non-hydrostatic pressure on free-surface elevation was
not included. Stansby and Zhou [4] using �nite volume formulation, included non-hydrostatic
pressure in momentum equations for incorporation in the surface elevation solution. At each
time step the pressure and velocities were adjusted through the solution of Poisson equation.
Promising results were shown, but this adjustment can in�uence the accuracy of the solution
and the test were applied only to the 2D problems. The curved open channel �ows are of
more importance for environmental hydraulic engineering, and several researchers have been
working on their numerical modelling. In such �ows, the secondary �ows generated by the
channel curvature and the related background turbulence e�ects, need to be well understood.
Lai et al. [5] have used �nite volume method on the unstructured grid to simulate 3D �ow
in meandering channel. Wu et al. [6] and Olsen [7] used 3D numerical models to study the
�ow structure and mass transport in curved open channel. Chao et al. [8] have simulated
the 3D unsteady curved open channel with standard k–� turbulence model and the non-
hydrostatic pressure on the conformal mesh. Most of these 3D models employed the rigid-
lid approximation and=or conformal mesh for the free-surface treatment, which can poorly
perform, especially in the presence of the strong curvature and=or strong bathymetry gradient
(see Reference [9]).
The present model is based on the novel approach developed by Leupi et al. [10], in which

the conservative formulation of the RANS is adopted as well as the multi-layers system (more
suitable for the strati�ed �uid �ow modelling) to provide an accurate resolution of the scheme.
The present work aims at validating 3D �nite element solver model against well-known

�ows with the increasing di�culties, using a high quality and high spatial resolution data set.
In this study, the full 3D Reynolds-averaged Navier–Stokes (RANS) equations are solved

using implicit time marching scheme, while discretization is conducted using Euler or
Runge–Kutta scheme to obtain a set of algebraic equations. The horizontal grid is built on the
xy plane unstructured triangular grid. The vertical grid is located at prede�ned heights and
the number of elements in the water column depends on water depth (the number of active
(wetted) layer is de�ned at each time step, and the vertical grid is regenerated at each time
step). The bottommost and topmost elements of variable height allow a faithful representation
of the bed and the time-varying free-surface, respectively. The model o�ers the capability of
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using either hydrostatic or hydrodynamic pressure distribution, and the model uses an e�-
cient fractional time-step scheme of Mohammadi and Pironneau [11] for the state-of-art k–�
turbulence closure.
An outline of this paper is as follows: In Section 2, we review the governing equations,

the associated boundary conditions and we derive a weak formulation suitable for the 3D
model. In Section 3, we introduce the discretization of the physical domain, the �nite element
approximation and the space–time discretization. In Section 4 we propose some numerical
tests of various complexity with the aim of outlining the good properties of the model.

2. MATHEMATICAL MODELS FOR TURBULENT FREE-SURFACE FLOWS

A brief description of the hydrostatic version with the turbulent model is provided in
Reference [10]. Let us consider an incompressible �uid body in a 3D time-varying domain �̂
in Figure 1. Let � the projection of �̂ on the xy horizontal plane, bounded by the free-surface
�s given by z= �(x; y; t), the bottom topography �b given by z= −h(x; y), the open boundary
denoted by �o. Where h(x; y) is the distance between the bottom and the reference plane xy
and �(x; y; t) the elevation of the free-surface with the respect to the reference plane xy.
For description of the turbulent motion, the pressure p can be written as the sum of an

hydrostatic term ph and an hydrodynamic correction pnh=�p̃,

p(x; t)=ph + pnh=pa + g�0(� − z) + g
∫ �

z
�� dz + �p̃(x; t) (1)

The 3D non-hydrostatic RANS equations reads

∇H ·U+ @w
@z
=0 (2)

X

YZ

η

z=−h(x,y)

Γo

Γb

Γc

Γs

Figure 1. Physical domain and its representation.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:149–170



152 C. LEUPI AND M. S. ALTINAKAR

DU
Dt

+ g∇H� − ∇H (�T∇HU)− @
@z

(
�T

@U
@z

)
+ g∇

(∫ �

h

��
�0

dz
)
+
1
�0

∇p̃=Fxy (3)

Dw
Dt

− ∇H (�T∇Hw)− @
@z

(
�T

@w
@z

)
+
1
�0

@p̃
@z
=0 (4)

@�
@t
+∇H ·

∫ �

−h

U dz=0 (5)

where U=(u; v)T is the horizontal velocity vector, Fxy=(fv;−fu)T is vector of body forces
with f the Coriolis parameter, g is the gravitational acceleration, �T is the eddy viscosity, (see
Reference [12]). ∇· is the 3D divergence operator, D=Dt represents the material derivative,
and ∇H · is the surface divergence operator. �, �0 are, respectively, the �uid density and the
basic water density.
In Equation (3), the vertical eddy viscosity is de�ned as

�T = �+ c�
k2

”
(6)

in which � is the kinematic viscosity.
The quantities k and ” are described by a generic form of equations [11].

Dk
Dt

− ∇ ·
[
c�

k2

”
∇k
]
= c�

k2

”
G − ” (7)

D”
Dt

− ∇ ·
[
c”

k2

”
∇”
]
=

c1
2
kG − c2

”2

k
(8)

The values of the turbulent constants are: c1 = 0:126, c2 = 0:07, c�=0:09, c”=1:92. The
production term is represented by the squared shear frequency, G, (see Reference [13]),
such as:

G= 1
2(‖∇V‖+ ‖∇V‖T)2 (9)

where ‖:‖ represents the Euclidian norm, V=V(u; v; w) is the 3D velocity vector.

2.1. Boundary and initial conditions

At the bottom, the no-slip condition is applied together with a zero normal velocity component
to �b. This second condition can be represented by

wb = ub
@h
@x
+ vb

@h
@y
=0 on �b (10)

The equilibrium assumption is adopted at the bed (i.e. local balance between production
of turbulent kinetic energy and the rate of dissipation). The wall functions are applied
to relate the velocity to the bed shear velocity u∗ in the rough turbulent boundary layer,
i.e. at the distance, �n, normal to the nearest wall such that, 30�=u∗¡�n¡100�=u∗ (see
References [6, 10, 14, 15]).
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At free-surface �s, the kinematic condition states that the �uid particles at the free-surface
move with the free-surface, one can �nd,

ws =
@�
@t
+ us

@�
@x
+ vs

@�
@y

on �s (11)

The depth-integrated continuity equation (5) is obtained from the integration of the (local)
continuity equation (2) in the z direction using the suitable the kinematic free-surface and
bottom boundary conditions.
At the free-surface, without wind stress, the boundary conditions for turbulent quantities

(see Reference [4]) read

@k
@z
=0; ”=

(kc�)1:5

0:07�h
(12)

where c�=0:09 is a model constant.
At the open outlet boundary denoted by �o, the Neumann boundary conditions are ap-

plied for the velocity (@U=@n=0), and other variables (i.e. a zero normal gradient through
these surfaces), where @=@n is a normal derivative to the surface. At the vertical wall �c,
the slip boundary conditions are used by setting all normal components to the vertical wall
equal to zero (Un=0), and Neumann boundary conditions are applied for turbulent
quantities.

3. FINITE ELEMENT APPROXIMATION

In this section we introduce the weak formulation and its space–time discretization. The
physical 3D domain (Figure 2) is embedded in a parallelepiped composed of N layers. The
horizontal projection of the domain � is discretized using an unstructured triangular mesh Th.
The same mesh is placed (�xed) in the middle of each layer. The vertical grid is located at
prede�ned heights and the number of elements in the water column depends on water depth
(the number of active or wetted layers is de�ned at each time step, and the vertical grid is
regenerated at each time step). The bottommost and topmost elements of variable height allow
a faithful representation of the bed and the time-varying free-surface, respectively. In a layer,
each triangular mesh element de�nes a 3D prismatic element. The horizontal components
of the velocity vector are de�ned at the middle of edges of the triangular mesh elements,
while the vertical components are associated with the lower and upper horizontal faces of the
element.
The horizontal velocity is approximated combining the lowest order Raviart–Thomas ele-

ment (RT0) in xy plane with the P1 elements along the vertical direction. For every integer
r¿0 we denote by Pr(T ) the space of polynomials of degree 6 r on each triangle T ∈Th

(see Figure 2) and consider the Raviart–Thomas vector �nite element space of lowest order
RT0 (see References [10, 16, 17]), with the following functional spaces H0; c(div;�)= {� :
�∈ (L2(�))2; div�∈L2(�); � · n=0 on �c}, �c denotes the vertical solid wall; The aniso-
tropic Sobolev space H 1(�){ ∈L2(�) : @xi  ∈L2(�); i=1; : : : ; d} and the following �nite
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X

= horizontal flux (u,v)

= w (vertical velocity)

= k, ε, q (scalars)X = elevation (η)

Vk+1

Vk−1

Vk

Ik+1

Ik−1

Ik δ 

  

z=
−h

(x
,y

)

Zk0

δ ZkX

Γs

Γb

Z = η(x,y,t)

Triangular mesh Reference Plane

Longitudinal cross section  and bathymetry  (Plane −xz)

Z

Degrees of freedom 

Figure 2. Physical domain representation with numerical variables location.

element spaces:

Qh = {q∈H0; c(div;�) | q |T ∈RT0(T ) ∀T ∈Th}
Uh = { ∈L2(�) |  |T ∈P0(T ) ∀T ∈Th}

WI11=2
= {’∈C0([−h; �]) | ’ |Ik+1=2 ∈P1(Ik+1=2) ∀Ik+1=2 ∈I1=2}

WI11
= {	∈C0([−h; �]) | 	 |Ik ∈P1(Ik) with 	 |−h =0 and 	 |� =0 ∀Ik ∈I1}

WI01
= {
∈L2(�) | 
 |k ∈P0(p) ∀Ik ∈I1}

(13)
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The approximation solutions for the variables read as

Un+1
h (x; z) =

K∑
k=k0

Ned∑
l=1

—n+1�l(x)’k(z) ∀�∈Qh ∀’∈WI1
1=2

�n+1
h (x) =

Nel∑
j=1

�n+1
j  j(x; z) ∀ ∈Uh

wn+1
h (x; z) =

Nel∑
s=1

K−1∑
k=k0

wn+1
s; h  s(x)	k+1=2(z) ∀ ∈Uh ∀	∈WI1

1

p̃n+1
h (x; z) =

Nel∑
s=1

K−1∑
k=k0

p̃n+1
s; h  s(x)
k(z) ∀ ∈Uh ∀
∈WI0

1

kn+1
h (x; z) =

Nel∑
s=1

K−1∑
k=k0

kn+1
s; h  s(x)
k(z) ∀ ∈Uh ∀
∈WI0

1

�n+1h (x; z) =
Nel∑
s=1

K−1∑
k=k0

�n+1s; h  s(x)
k(z) ∀ ∈Uh ∀
∈WI0
1

(14)

with —l;k =
∫
el Uk · nl d�; l=1; : : : ; Ned.

Ned and Ne denote, respectively, the number of (oriented) edges el and triangles Tj in the
mesh, by k0 and K), respectively, the indice of bottom and uppermost layer, Np is the total
number of active prisms.
To approximate the system of Equations (2), (5), (3) on each prism (p), using Greens for-

mula and the boundary conditions the problem statement is to �nd U∈Qh×WI11=2
, w∈Uh× WI11

,
pr ∈Uh × WI01

, k ∈Uh × WI01
, ”∈Uh × WI01

, such that:∫
@p

wn+1nz ds=
∫
@p
Un+1 · nxy dS ∀p (15)

∫
�
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�t
 d� +

∫
�

(
∇H ·

∫ �n

−h

Un+1 dz

)
 d�=0 (16)

∫
�
 
∫ �n

−h
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�t
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∫
@�
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−h

�nT

[
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1
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∫
�
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−h
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· � dz d�= g

∫
�
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−h
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+g
∫
�
’∇

(∫ �n

h

�n − �0
�0

dz

)
� d�

+
∫
�

∫ �n

−h

’fnxy · � dz d� + 1
�0

∫
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−h
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 d�dz
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∫
�0∩�b
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−h
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∫
�

∫ �n

−h



(kn+1 − kn(X))

�t
 d�dz=

∫
@�

∫ �n

−h


∇ ·
[
c�

kn2

”n
∇kn+1

]
· n d�dz

+
∫
�

∫ �n

−h



(
c�
(kn)2

”n
Gn − ”n

kn+1

kn

)
 d�dz (19)

∫
�

∫ �n

−h



(”n+1 − ”n(X))

�t
 d�dz=

∫
@�

∫ �n

−h



[
c�

kn2

”n
(∇”n+1)

]
· n d�dz

+
∫
�

∫ �n

−h



(
c1
2
knGn − c2

(”n”n+1)
kn

)
 d�dz (20)

where |T | denotes the surface of the triangle. nxy; nz are, respectively, the horizontal and
vertical components of the normal vector n.
The Lagrange–Galerkin (or characteristic-Galerkin) approach is used (see Ref-

erences [11, 16]) to discretize the convection terms, while the Euler scheme or more accurate
Runge–Kutta is used to obtain the algebraic system. At each time step it is only required to
solve a set of the positive de�nite symmetric matrices for the �uxes using the conjugate gradi-
ent solver. To avoid spurious numerical oscillations, the source term, G, in the k equation has
been discretized explicitly, while the sink term has been discretized using the quasi-implicit
forms and consequently the nonlinear terms have been linearized (see References [11, 12]).
The characteristics method used here can guarantee the positivity of k and ” (monotonicity
of the solution). The model adopts the fractional time-step scheme from Mohammadi and
Pironneau [10, 11], to solve turbulence equations. In this algorithm, the ordinary system of
turbulence equations are splitted by �rst solving the convection step (containing only the
terms of order zero) and the di�usion step (containing the other remaining terms) �nally.
Consequently, the positivity of k and ” is preserved as well as the stability of the scheme
(see Reference [10]).

4. NUMERICAL RESULTS

To check the validity of the developed model, the computations were carried out against well-
known �ows with the increasing complexity, using a high quality and high spatial resolution
data set. In the spatial discretization, the lowest layer thickness �Zb is chosen such that, the
adjacent grid point (�rst vertical grid point) should lie within the rough turbulent boundary
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layer, i.e. 30�=u∗¡�n= �Zb=2¡100�=u∗. In the wall region, the shear stress can be assumed
constant, u∗ ≈ 0:1U , where U is a �ow mean velocity (see Reference [18]), �n is a normal
vertical distance of the �rst vertical mesh point from the bottom.

4.1. The model accuracy

To compute the decay of the homogeneous turbulence convected by a uniform �ow, some
analytical solutions have been used (see Reference [11]) for the steady open channel �ow
(see Reference [10, 19]):

k = k0
(
1 + (ca − 1)x ”

0

k0

)1=(1−ca)

(21)

”= ”0
(
1 + (ca − 1)x ”

0

k0

)ca=(1−ca)

(22)

where x is the longitudinal coordinate, ca = 2:06 is a constant, k0 and ”0 are, respectively, the
initial values of the turbulent kinetic energy and its rate of dissipation. In this computations,
the channel is 38[m] long, the width is B=2[m] and the �ow depth is h=0:183[m]. The
discharge is Q=0:25[m=s], the bed roughness is ks = 0:0042[m], and the bed slope is set to
S0 = 0:000624. Computations were conducted using 100 layers, with the lowest layer thickness
�Zb = 0:002[m].
Figures 3 and 4 show the good agreement between computed and analytical solutions.

x [m]

ε 
x 
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s³

]
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0.2

0.1
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computed

Figure 3. Computed � versus analytical solution.
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Figure 4. Computed k versus analytical solution.

4.2. Space and time order accuracy

In the following, the order spatial accuracy of the model is investigated through the above
analytical solutions (for the temporal accuracy, we used the same Equations (21) and (22),
in which x is replaced by t). One can determine the observed order of spatial accuracy on
the space increment by calculating (see Reference [20]),

p(	)= log
( ‖	n −	n+1‖2

‖	n+1 −	n+2‖2

)/
log(2) (23)

where p(	) denotes the observed order of spatial accuracy for the computed turbulence
variable 	= (k; �) on di�erent mesh sizes (denotes by n, n + 1, n + 2), and the di�erences
are measured in the L2-norm. The computations were performed on di�erent sequences of
mesh sizes (to determine the spatial order accuracy) and on di�erent time-step sizes (to
determine the temporal accuracy). The error between the exact solution 	e and analytical
solutions 	= (k; ”) is calculated using a high-order Gaussian quadrature formula to compute
the following L2-norm:

‖e‖= ‖	e −	‖=
[∫

̂�
|	e −	|2 d�̂

]1=2
(24)

Table I shows the observed order of spatial accuracy, where CA represents a surface of
the �nest grid size (triangle) of the 2D-horizontal unstructured mesh. Figure 5(b) shows
the expected spatial accuracy behaviour, i.e. second-order space accuracy, and indicates a
convergence of the scheme for k and �. Moreover, (� equation behaves better) for a speci�c
error tolerance, both solutions do not depend on the mesh size.
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Table I. Spatial order accuracy.

n(�t=
√
CA[s]) CA[m2] k[m2=s2] �[m2=s3] p(k) p(�)

0 0.90537 0.09444869 0.0005053 1.7523201 1.1594802
1 0.45084 0.06473693 0.0007306 1.5348852 1.6964046
2 0.22551 0.04930999 0.0012773 1.8440260 1.8364252
3 0.11437 0.02277905 0.0027249 1.9016979 1.7976704
4 0.05586 0.01535665 0.0030808 1.9556649 1.9763579
5 0.02833 0.00823566 0.0033009 1.9997129 1.9980793
6 0.01406 0.00649211 0.0033198 2.0018692 2.0930549
7 0.00713 0.00648377 0.0033198 2.0018511 2.0919611

n

p
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Figure 5. Space–time accuracy of the model: (a) observed order p of temporal accuracy versus di�erent
mesh sizes; and (b) observed order of spatial accuracy versus di�erent time-step sizes.

Table II. Temporal order accuracy.

n(�t=
√
Ct[s]) Ct k[m2=s2] �[m2=s3] p(k) p(�)

0 0.2 0.0098023 0.0004865 0.460602294 0.470819844
1 0.15 0.0018911 0.0012081 0.965543241 0.976251193
2 0.1 0.0257790 0.0021249 0.976235828 0.996778353
3 0.08 0.0394728 0.0029808 0.996763275 1.032926204
4 0.06 0.0583956 0.0031808 1.011424351 1.033425036
5 0.05 0.0643692 0.0033198 1.073921159 1.054290358
6 0.02 0.0647604 0.0033585 1.073049571 1.068591611
7 0.01 0.0648377 0.0033874 1.079972414 1.079981914

Table II shows the observed order of temporal accuracy, where Ct is a time-step constant.
The time characteristic-Galerkin for the turbulence model uses �rst-order explicit backward
Euler scheme to preserve the monotonicity of the scheme. The time discretization is therefore
�rst-order accurate. Consequently, the coupled system can be at most �rst-order time accurate
as con�rmed in Figure 5, in which we use the �nest mesh corresponding to the last line of
Table II.
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4.3. Unsteady and non-uniform open channel �ow

The channel layout and dimensions as well as the given discharge hydrograph are shown
in Figure 6. The channel is 18[m] long, the width is B=0:60[m]. The rough bed has an
equivalent roughness height, ks = 0:0058[m]. The �ow depth at the out�ow (downstream
end of the �ume) is 0.13[m]. The experimental data are available for the �ow case (see
Reference [21]). The mean grid size is about �x=0:08[m] and the time step is set to
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Figure 6. Unsteady open channel and triangular hydrograph.
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�t=0:1[s]. Computations were conducted using 20 layers, with the lowest layer thickness
�Zb = 0:002[m]. The pictures in Figure 7 show �ow depth time variation at the selected stations
x=10:78[m] and x=14:08[m]. The model produces the surface ondulation as expected for
the non-uniform �ow, and good agreement is found between computations and experiments.

4.3.1. Error between computed depth and analytical solution. Error estimation is conducted
between the computed �ow depth (hc) and experiments (h) at the selected sections x=10:78
[m] and x=14:08[m], using the following expression:

Error(h)= (h − hc) (25)

Figure 8 shows the �ow depth values at time T =350[s]. The error is found to be less than
0.0006[m], which is to con�rm the good accuracy of the numerical model.

4.3.2. Computations versus experiments. Figure 9 shows the comparison between computed
and measured distributions of the velocity, the eddy viscosity, and the shear stress at two
stations x=10:78[m] and x=14:08[m] at time at T =700 s. The computed velocity, eddy
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Figure 9. Comparison between computation hydrostatic solution (—), Non-hydrostatic solution (�) and
experiments (◦) at the sections: (a) x=10:78[m]; and (b) x=14:08[m].

viscosity and shear stress pro�les of the well developed �ow compares favourably with the
experiments. The eddy viscosity goes to zero near the free-surface, increases with the depth
with a maximum around the mid-depth, and decreases towards zero near the bed. Figure 10
shows the more accurate solutions with the non-hydrostatic pressure. Computations agree well
with experiments for the kinetic energy, its rate of dissipation and shear stress at the selected
sections.

4.4. Sharp and curved open channel: discussions

The channel layout and dimension is shown in Figure 11. The discharge is set to Q=0:089
[m=s], the bed slope S0 = 0:000624. The rough bed is characterized by an equivalent roughness
height, ks = 0:0022[m]. The �ow depth at the out�ow (downstream end of the �ume) is
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Figure 10. Comparison between computed and measured kinetic energy its dissipation at the selected
sections: (a) comparison between numerical and experimental turbulent kinetic energy distributions at
the selected sections; and (b) comparison between numerical and experimental turbulent dissipation of

kinetic energy distributions at the selected sections.

0:159[m]. The experimental data are available for the �ow case (see Reference [22]). The mean
grid size of about �x=0:05[m], while the time-step size is set to �t=0:1 [s]. Computation
is performed till the �ow is well developed at T =1300[s], using 60 layers, with the lowest
layer thickness �Zb = 0:002[m].
Computations were conducted with the hydrostatic pressure assumption for di�erent cross-

sections with the increasing curvature, to determine the conditions where the non-hydrostatic
pressure component become signi�cant.
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Figure 11. A 193◦ curved open channel.

Computations predict the gross �ow features, while the water surface pro�le is under-
estimated at the out bank, and over-estimated at the inner bank.
Figure 12 shows the cross-section at �=120◦, where the conventional hydrostatic pres-

sure is found to perform poorly. Here agreement with experiments is rather better with non-
hydrostatic pressure, particularly with the increasing curvature. It seems likely that is due
to the incorporation of free-surface movement as well as short waves. This suggest that,
in curved channel �ows, the pressure-driven secondary e�ects are important and the com-
putation of free-surface must be more accurate to take into account the damping e�ects of
free-surface.
In Figures 13 and 14, computations show only one secondary �ow circulation rotating

clockwise from inner bank to outer bank, i.e. the weak secondary currents are not predicted.
The maximum under prediction in the secondary current for each vertical examined in this
cross-section is ranged between 25 and 95% for non-hydrostatic solution, while the hydrostatic
ones is ranged between 30 and 105%. These results suggest that this model can be considered
to perform well (see also References [23, 24]). Figure 14 shows the centre of vortex position,
that is located at about z=0:25[m] for the hydrostatic solution, z=0:35[m] for the non-
hydrostatic solution while experiments is located at z=0:4[m].
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Figure 12. Experiments versus computed free-surface solutions at section �=120◦ using linear k–�
turbulence model: experiment (�); hydrostatic (dashed line); and non-hydrostatic (solid line).

Figure 15 shows the cross-wise longitudinal velocity component at the section �=120◦, and
the hydrostatic solution is over predicted, while the non-hydrostatic solution is more closed
to the experiments. The computed maximum primary velocity is o�set towards the channel
centre relative to the outside of the bend, leading to the under prediction in secondary currents
strength. This suggest that the turbulence-driven secondary e�ects are nonlinear. Whereas the
anisotropic stress caused by walls and the junction region is not captured by the model,
this leads to reduced momentum transfers towards the outer region of the bend with the
consequence on the position of the maximum longitudinal velocity. Consequently, as shown by
Gatski et al. [25], the related weaker turbulence-driven secondary motion cannot be reproduced
by linear and isotropic eddy-viscosity turbulence models. However, the major �ow features
such as the presence and rotational sense of the major secondary currents are reproduced
and agrees well with experiments. Moreover, the non-hydrostatic pressure in�uence is found
to be more signi�cant with the increasing curvature region. Therefore, although being more
expensive, it become useful for such �ows where its in�uence is thought to be signi�cant.
This suggest that the pressure-driven secondary currents is relatively important in the accurate
description of the velocity �eld, while the use of anisotropic turbulence models is prerequisite
to more accurate �ow �eld prediction.

5. CONCLUSIONS

In the present work the validation of the 3D �nite element solver for the Reynolds-averaged
Navier–Stokes equations with the state-of-art k–� turbulence closure is successfully conducted.
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Figure 13. Experiments versus computed solutions of the transversal velocity component Vn of
cross-stream at section �=120◦: (a) experiment; (b) hydrostatic; and (c) non-hydrostatic.
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Figure 14. Experiments versus computed solutions of the cross-stream velocity vector at section
�=120◦: (a) experiment; (b) hydrostatic; and (c) non-hydrostatic.
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Figure 15. Experiments versus computed solutions of the stream-wise velocity component Vs of
cross-stream at section �=120◦: (a) experiment; (b) hydrostatic; and (c) non-hydrostatic.
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The tests were performed in order to validate the model against well-known �ows with the
increasing complexity, using a high quality and high spatial resolution data set. The lower
order Raviart–Thomas �nite element is used for horizontal �ux in the xy plane unstructured
grid, together with a linear �nite element scheme in the vertical direction. The model uses
Lagrange–Galerkin approach to compute the convection terms, with the principal advantage
that, owing to the Lagrangian (i.e. non-local) nature of the advection step, the CFL restriction
is well performed. The model preserves the mass balance, the stability of the scheme and the
positivity of k and �. On the other hand, the unstructured grid o�ers possibility of greatly
reduced grid generation e�ort for �ows with complex geometry. Computations with and with-
out non-hydrostatic are compared for the same trench to test the validity of the conventional
hydrostatic pressure assumption. For the curved open channel, as expected, the linear k–�
model do not reproduces the weaker secondary current in the straight part of the channel.
The non-hydrostatic pressure in�uence is found to be more signi�cant with the increasing
curvature region, and this suggest that the non-hydrostatic pressure (which is the computa-
tionally expensive part of the scheme) may be useful and well suited when a 3D description
of �ow �eld is needed or where its in�uence is thought to be signi�cant. The model accuracy
is found to be of order of O(�t;�x2), and the model predicts reasonably the complex major
features and their consequences on the 3D �ows. However, further study is needed to improve
the general applicability of the model, and the next stage of this work will be focus on the
non-uniform anisotropic turbulence-driven secondary motion.
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